Web Appendix to "Robust Comparative Statics of Risk Changes"

Diego C. Nocetti*

March 1, 2015

This web appendix provides supplementary proofs to the examples given in the paper "Robust comparative statics of risk changes." The proofs of the motivating example (Section 2) and of Example 1 are in the main body of the paper, so this appendix concentrates in the proof of Examples 2-6.

Example 2. Precautionary saving with time non-separable utility

Define \(X_i = \arg \max_{x \in B} EU(x, \hat{\varepsilon}_i) = \arg \max_{x \in B} Eh(y_0 - x, x + \hat{\varepsilon}_i), \) \(i = 1, 2. \) Suppose that \(\varepsilon_1 \succ_N \varepsilon_2, \) that \(h \) is \(N + 1 \) times differentiable in the second argument and once in the first argument, and that \(B \) is a compact interval of \(\mathbb{R}. \) Then, \(X_2 \geq_S X_1 \) if, equivalently, one of the following conditions hold:

- Lottery \(A = [y_0 - x^l, x^l + \hat{\varepsilon}_1; y_0 - x^h, x^h + \hat{\varepsilon}_2] \) is preferred to lottery \(B = [y_0 - x^h, x^h + \hat{\varepsilon}_1; y_0 - x^l, x^l + \hat{\varepsilon}_2] \) for all \(\varepsilon_1 \succ_N \varepsilon_2 \) and all \(x^h \geq x^l. \)
- \((-1)^N (h^{(0,N+1)} - h^{(1,N)}) \geq 0. \)

Proof. Let \(x_1 \in X_1 \) and \(x_2 \in X_2. \) We show that \(\max \{x_1, x_2\} \in X_2. \) We have

\[
0 \geq Eh(y_0 - \max \{x_1, x_2\}, \max \{x_1, x_2\} + \hat{\varepsilon}_2) - Eh(y_0 - x_2, x_2 + \hat{\varepsilon}_2) \\
\geq Eh(y_0 - \max \{x_1, x_2\}, \max \{x_1, x_2\} + \hat{\varepsilon}_1) - Eh(y_0 - x_2, x_2 + \hat{\varepsilon}_1) \\
\geq 0
\]

The first inequality follows from \(x_2 \in X_2, \) the second inequality follows from the statement that lottery \(A \) is preferred to lottery \(B \) (equivalently, that the payoff function has decreasing differences in \((x, \varepsilon)\)), and the third inequality follows from the definition of \(X_1 \) and \(x_1 \in X_1. \) Since the inequalities are enclosed by zeroes, it follows that \(\max \{x_1, x_2\} \in X_2. \) Similarly, \(\min \{x_1, x_2\} \in X_1, \) so we conclude that \(X_2 \geq_S X_1. \)

By Lemma 1 in the main body of the paper, lottery \(A \) is preferred to lottery \(B \) for all \(\varepsilon_1 \succ_N \varepsilon_2 \) and all \(x^h \geq x^l \) if and only if \((-1)^N (h^{(0,N)}(y_0 - x^h, x^h + \varepsilon) - h^{(0,N)}(y_0 - x^l, x^l + \varepsilon)) \geq 0 \) for all \(\varepsilon, \) i.e. if and only if \((-1)^N (h^{(0,N+1)} - h^{(1,N)}) \geq 0, \) which is the required result. We remark that \(U^{(0,N)} = h^{(0,N)} \) and, by continuity, \(U^{(1,N)} = h^{(0,N+1)} - h^{(1,N)}. \) Thus, \((-1)^N (h^{(0,N+1)} - h^{(1,N)}) \geq 0 \iff (-1)^N U^{(1,N)} \geq 0, \) as established in Proposition 1.

*Clarkson University, School of Business. P.O.Box 5790, Potsdam NY. Email: dnocetti@clarkson.edu
Example 3. Saving and risky interest rates

Define $X_i = \arg \max_{x \in B} EU (x, \hat{\epsilon}_i) = \arg \max_{x \in B} u (y_0 - x) + Ev (x \hat{\epsilon}_i)$, $i = 1, 2$. Suppose that \(\hat{\epsilon}_1 \succ_n \hat{\epsilon}_2 \), that v is $N + 1$ times differentiable with its successive derivatives alternating in sign, and that B is a compact interval. No restrictions are imposed on u. Then, $X_2 \geq_x X_1$ if, equivalently, one of the following conditions hold:

- Lottery $A = [x^l \hat{\epsilon}_1; x^h \hat{\epsilon}_2]$ is preferred to lottery $B = [x^h \hat{\epsilon}_1; x^l \hat{\epsilon}_2]$ for all $\hat{\epsilon}_1 \succ_n \hat{\epsilon}_2$ and all $x^h \geq x^l$ (both lotteries defined over date-1 consumption).
- The measure of Nth degree relative risk aversion (Eeckhoudt and Schlesinger (2008)), $\frac{v^{(N+1)}(x)x}{v^{(N)}(x)}$, is no smaller than N.

Proof. Let $x_1 \in X_1$ and $x_2 \in X_2$. We show that $\max \{x_1, x_2\} \in X_2$. We have

\[
0 \geq [u (y_0 - \max \{x_1, x_2\}) + Ev (\max \{x_1, x_2\} \hat{\epsilon}_2)] - [u (y_0 - x_2) + Ev (x_2 \hat{\epsilon}_2)] \\
\geq [u (y_0 - \max \{x_1, x_2\}) + Ev (\max \{x_1, x_2\} \hat{\epsilon}_1)] - [u (y_0 - x_2) + Ev (x_2 \hat{\epsilon}_1)] \\
\geq 0
\]

The first inequality follows from $x_2 \in X_2$, the second inequality follows from the statement that lottery A is preferred to lottery B (equivalently, that $Ev (x \hat{\epsilon})$ has decreasing differences in $(x, \hat{\epsilon})$ and, by Remark 1 in Section 3 of the paper, that lifetime utility has decreasing differences in (x, ϵ)), and the third inequality follows from the definition of X_1 and $x_1 \in X_1$. Since the inequalities are enclosed by zeroes, it follows that $\max \{x_1, x_2\} \in X_2$. Similarly, $\min \{x_1, x_2\} \in X_1$, so we conclude that $X_2 \geq_x X_1$.

By Lemma 1 in the main body of the paper, lottery A is preferred to lottery B for all $\hat{\epsilon}_1 \succ_n \hat{\epsilon}_2$ and all $x^h \geq x^l$ if and only if $(-1)^N \left(v^{(N)} (x^h \epsilon) \frac{[x^h]^N - v^{(0,N)} (x^h \epsilon)}{[x^l]^N} \right) \geq 0$ for all ϵ (i.e. $(-1)^N U^{(0,N)}$ is increasing in x, as in Proposition 1). Given the differentiability assumptions, this condition is equivalent to $(-1)^N \left(v^{(N+1)} (x \epsilon) x + N v^{(N)} (x \epsilon) \right) \geq 0$. With the assumption that the successive derivatives of v alternate in sign, we obtain the condition in the example, $-\frac{v^{(N+1)}(x)x}{v^{(N)}(x)} \geq N$.

Example 4. Self-protection with background risk

Define $X_i = \arg \max_{x \in B} EU (x, \check{\epsilon}_i) = \arg \max_{x \in B} \{u (y_0 - x) + P (x) Ev (y_1 + \check{\epsilon}_i) + [1 - P (x)] Ev (y_1 - L + \check{\epsilon}_i)\}$, $i = 1, 2$. Suppose that B is a compact interval of \mathbb{R} and that u, v, and P are strictly increasing and smooth. Then, if the decision maker is strictly prudent, in the sense that lottery $[y_1 - L + \check{\epsilon}_1; y_1 + \check{\epsilon}_2]$ is strictly preferred to lottery $[y_1 + \check{\epsilon}_1; y_1 - L + \check{\epsilon}_2]$ for all $\check{\epsilon}_1 \succ \check{\epsilon}_2$, and if $x^*_1 \in X_1$ and $x^*_2 \in X_2$, then $x^*_2 \geq x^*_1$.

Proof. Wang and Li (forthcoming) provide a proof of the statement. We present a simpler and more general proof along the lines of the discussion in our paper. Rewrite the payoff function as $f_1 (x) + Ef_2 (\check{\epsilon}_i) + P (x) Eg (\check{\epsilon}_i)$, where $g (\check{\epsilon}_i) = [v (y_1 + \check{\epsilon}_i) - v (y_1 - L + \check{\epsilon}_i)]$. Let $x^*_1 \in X_1$ and $x^*_2 \in X_2$. Suppose that $x^*_1 > x^*_2$. We have
\[0 \geq [f_1(x^*_1) + Ef_2(\bar{\epsilon}_2) + P(x^*_1) Eg(\bar{\epsilon}_2)] - [f_1(x^*_2) + Ef_2(\bar{\epsilon}_2) + P(x^*_2) Eg(\bar{\epsilon}_2)] \]
\[> [f_1(x^*_1) + Ef_2(\bar{\epsilon}_1) + P(x^*_1) Eg(\bar{\epsilon}_1)] - [f_1(x^*_2) + Ef_2(\bar{\epsilon}_1) + P(x^*_2) Eg(\bar{\epsilon}_1)] \]
\[\geq 0 \]

The first inequality follows from \(x^*_2 \in X_2 \), the second inequality follows from the assumptions of strict prudence and that \(P(x) \) is strictly increasing, and the third inequality follows from \(x^*_1 \in X_1 \). Since the inequalities are enclosed by zeroes, there is a contradiction.\[\square \]

Example 5. Borrowing and human capital investments

Define \(X_i = \arg\max_{x \in B} EU(x, \bar{\epsilon}_i) = \arg\max_{(h,d) \in B} u(y - h + d) + Ev(h\bar{\epsilon}_i - d) \), \(i = 1,2 \), and \(\bar{\epsilon}_1 \succ \bar{\epsilon}_2 \). Suppose that \(B \) is a compact sublattice of \(\mathbb{R}^2 \), that \(v \) is concave and twice differentiable, and that \(u \) is concave. Then, \(X_1 \geq_S X_2 \) if, equivalently, one of the following conditions hold:

- Date-1 lottery \(A = [h'\bar{\epsilon}_1 - d', h''\bar{\epsilon}_2 - d'] \) is preferred to date-1 lottery \(B = [h''\bar{\epsilon}_1 - d'', h'\bar{\epsilon}_2 - d'] \) for all \(h' \geq h'' \), \(d' \geq d'' \), and all \(\bar{\epsilon}_1 \succ \bar{\epsilon}_2 \)

- \(v^{(2)}(h\epsilon - d)h^2 \) is decreasing in \((h,d)\).

Proof. Let \((h_1, d_1) \in X_1 \) and \((h_2, d_2) \in X_2 \). We need to show that \((\max\{h_1, h_2\}, \max\{d_1, d_2\}) \in X_1 \) and \((\min\{h_1, h_2\}, \min\{d_1, d_2\}) \in X_2 \). We have

\[0 \geq [u(y - \max\{h_1, h_2\} + \max\{d_1, d_2\}) + Ev(\max\{h_1, h_2\} \bar{\epsilon}_1 - \max\{d_1, d_2\})] - [u(y - h_1 + d_1) + Ev(h_1\bar{\epsilon}_1 - d_1)] \]
\[\geq [u(y - \max\{h_1, h_2\} + \max\{d_1, d_2\}) + Ev(\max\{h_1, h_2\} \bar{\epsilon}_2 - \max\{d_1, d_2\})] - [u(y - h_1 + d_1) + Ev(h_1\bar{\epsilon}_2 - d_1)] \]
\[\geq [u(y - h_2 + d_2) + Ev(h_2\bar{\epsilon}_2 - d_2)] - [u(y - \min\{h_1, h_2\} + \min\{d_1, d_2\}) + Ev(\min\{h_1, h_2\} \bar{\epsilon}_2 - \min\{d_1, d_2\})] \]
\[\geq 0 \]

where the first inequality follows from the definition of \(X_1 \) and \((h_1, d_1) \in X_1 \), the second inequality follows from the statement that lottery \(A \) is preferred to lottery \(B \) (equivalently, that the payoff function has increasing differences in \([(h,d), \bar{\epsilon}] \) (using Remark 1)), the third inequality follows from the assumption that \(u \) and \(v \) are concave, so the payoff function is supermodular, and the fourth inequality follows from the definition of \(X_2 \) and \((h_2, d_2) \in X_2 \). The conclusion then follows. Furthermore, by Lemma 1 in the main body of the paper lottery \(A \) is preferred to lottery \(B \) for all \(h' \geq h'' \), \(d' \geq d'' \), and all \(\bar{\epsilon}_1 \succ \bar{\epsilon}_2 \) if and only if \(v^{(2)}(h'\epsilon - d') [h']^2 - v^{(2)}(h''\epsilon - d'') [h'']^2 \leq 0 \) for all \(\epsilon \) (i.e. \(v^{(2)}(h\epsilon - d)h^2 \) is decreasing in \((h,d)) \).\[\square \]

Example 6. Risky R&D investments

Define \(X_i = \arg\max_{x \in B} EU(x, \bar{\epsilon}_i) = \arg\max_{(q,r) \in B} E[p(q) - c(r\bar{\epsilon}_i) q - g(r)] \), \(i = 1,2 \), and \(\bar{\epsilon}_1 \succ \bar{\epsilon}_2 \). Suppose that \(B \) is a compact sublattice of \(\mathbb{R}^2 \) and that \(c(\epsilon r) \) is twice differentiable. If \(c^{(1)}(\epsilon r) < 0 \) and \(c^{(2)}(\epsilon r) qr^2 \) is increasing in \((q,r) \) (e.g. if \(c^{(2)}(\epsilon r) \) is positive and non-decreasing), then, the profit function is supermodular in \((q,r) \) and has increasing differences in \([(q,r), \bar{\epsilon}] \); thus, \(X_1 \geq_S X_2 \).
Proof. The fact that supermodularity of the profit function in \((q,r)\) and increasing differences in \([(q,r), \tilde{c}]\) implies \(X_1 \geq S X_2\) can be shown along the same lines of Example 5 (or directly from Proposition 3). Thus, we only prove the statement above. First note that the profit function is supermodular in \((q,r)\) if and only if the function \(-c(r\tilde{c}_i)q\) is supermodular in \((q,r)\). Thus, the profit function is supermodular if marginal cost is decreasing in \(r\). Similarly, by Remark 1 in the main body of the paper, it suffices to consider the condition under which the function \(-c(r\tilde{c}_i)q\) displays increasing differences in \([(q,r), \tilde{c}]\) : \([-c(r'\tilde{c}_1)q' - c(r''\tilde{c}_2)q''] \geq [-c(r'\tilde{c}_2)q' - c(r''\tilde{c}_1)q'']\), or equivalently, \([c(r'\tilde{c}_2)q' + c(r''\tilde{c}_1)q''] \geq [c(r'\tilde{c}_1)q' + c(r''\tilde{c}_2)q'']\) for all \(q' \geq q'', r' \geq r''\), and all \(\tilde{c}_1 \geq \tilde{c}_2\). By Lemma 1 in the main body of the paper this will be the case if \(c^{(2)}(r'\tilde{c})q' [r']^2 - c^{(2)}(r''\tilde{c})q'' [r'']^2 \geq 0\) (i.e. \(c^{(2)}(r\tilde{c})q r^2\) is increasing in \((q,r)\)).